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Abstract

Many portable devices are targeted at a mass market that justified to employ low-cost
hardware components and highly performance-optimised software to reduce overall
costs. Such applications often exhaustively use hardware features without any oper-
ating system layer that decouples software from architecture specific peculiarities like
address space or interrupt handling. Even with the source code available it is hard
to port these applications to new architectures.

Ongoing development of processors allows embedded devices to be cheap while provid-
ing high performance. This makes it feasible to use performance demanding system
level emulation software that enables (binary) legacy applications to run without
modifications on new platforms.

In this work we evaluate to what extent dynamic binary translation can reduce ef-
ficiency losses of system level emulation. We present an exemplary dynamic binary
translator that (together with other modifications) is used to speed up the Nintendo
Gameboy system level emulator gnuboy on the chosen host architecture: An Apple
iPod.



1 Introduction

The Apple iPod is a portable music player that does not facilitate a dedicated chip for
music decoding but two fast general purpose processors. The available performance
made it feasible for the iPodLinux project to port linux to the iPod and unleash its
versatile capabilities.

The fact that the iPod is a very popular portable device and its visual appearance in-
spired us to revive another popular portable device: the Nintendo Gameboy. Gnuboy
is predestinated as a starting point for this intention as it is an open source gameboy
emulator with the aim for easy portability. Therefore it was not too hard to get a
first version of gnuboy running under linux on the iPod. As emulation performance
was far from reaching realtime the CPU core was entirely rewritten in arm assembler.

Improvements of only 5-10% (still insufficient to reach realtime) were one of the rea-
sons to choose a different concept for CPU emulation: dynamic binary translation.
An introduction to dynamic binary translation and similar topics discussed in related
papers can be found in section 2. Detailed descriptions of the 8 bit target architecture
that is emulated on systemlevel and the 32 bit host architecture with its lacking mem-
ory management unit are given. Together with an introduction of gnuboys structure
the constraints that outline our design are formed.

In the main part various design decisions and their alternatives are presented. The key
issue is that target applications operate on a low level without utilising an operating
system or system calls - hardware can be accessed in an arbitrary way and applica-
tions rely on precise timing of interrupts. A high degree of cycle accurate emulation
has to be achieved to ensure correct behaviour (in terms of user perception). These
considerations affect the characteristics of the dynamic translators architecture and
manifest in our implementation. Aspects of the translator-system like register map-
ping, instruction set description, the structure of basic blocks and interrupt handling
are described in detail as well as optimisations like flag liveness/constant analysis and
used code caching strategies.

Finally we present the results of comprehensive evaluations that show the potential
of our implementation under certain benchmark conditions.



2 Related Work

2.1 Efficient Implementation of the Smalltalk-80 System

Deutsch and Schiffman present methods to accelerate a complex programming system
(Smalltalk). These methods are mainly based on the single principle of dynamic
change of representation which leads to the idea to dynamically translate code for a
virtual machine to native code of the executing machine. [4]

2.2 A Case For Runtime Code Generation

Keppel et al. give an introduction what runtime code generation (RTCG) is and
why it has not disappeared despite of changing technology in computer systems. A
system uses RTCG when binary code (especially in the form of machine instructions)
is added to the instruction stream at runtime (dynamically). Two different ways to
implement a dynamic compiler are described in [6]. Template based compilers use
code fragments linked together depending on the instruction input stream. They
often have to be written partially in assembly language of the host machine which
makes them less portable. Portable compilers on the other hand use an intermediate
representation which makes them more generic and flexible - the downside is higher
computational effort at runtime. [6]

2.3 Shade

Cmelik and Keppel describe a fast instruction set simulator with profiling support
and discusses instruction set emulation in general. In Shade basic blocks (junks of
target architecture instructions) are translated to host architecture instructions at
runtime forming so-called translations. Furthermore, ways to cache such translations
to reduce compilation overhead are presented. The main parts of the implementation
are: A compiler (or translator), a mapping of target program counter to (already
compiled) translations and a virtual state (registers, memory). [3]

The compiler translates each target instruction to a series of host instructions that
simulate target register and memory actions on the virtual state. A translated basic
block of target instructions is called translation. To reduce the overhead of compi-
lation, translations are stored in a cache. The target PC of the first instruction of
a basic block is used to find the corresponding translation. Then the translation is
executed and the target PC is set to its new value.

Basic blocks are usually rather small (a few instructions), therefore the overhead in



the main loop gets dominant. To overcome this problem, translations are chained:
In the predecessor the return instruction to the main loop is replaced by a branch to
the entry point of the successor translation.

2.4 SimOS, Embra

Rosenblum et al. [15] present a machine simulator capable of representing processors,
caches and memory systems of uni- and cachecoherent multiprocessors with choseable
detail even at runtime. This allows the user to skip uninteresting parts of a program
(simulating less detailed and thus faster). Witchel and Rosenblum [18] present a
fast CPU simulator for SimOS called Embra that uses techniques described in [3] for
dynamic binary translation but additionally handles MMU address translation and an
event callback queue to support interrupts requested by SimOS. To simulate the MMU
virtual addresses are mapped to physical addresses of the simulated architecture and
then (via an offset) to the host architecture memory. In Embra these translations are
efficiently combined in one step.

2.5 Out-of-Order Execution Techniques for BT

Bich [7] summarises binary translation techniques and extends them by an out-of-
order optimisation for architectures supporting parallel execution of instructions. Ex-
ceptions occurring within reordered instructions pose a problem. Execution has to
be restarted from a save point to preserve the sequential semantics.

2.6 Machine-Adaptable Dynamic Binary Translation

In [16] UQDBT, a framework for dynamic binary translation is presented which has
the main goal of increasing the portability over traditional dynamic binary translators
in terms of source and target architectures which is reached by using an intermediate
representation of basic blocks. The task to find a specification of a generic language
covering present (and possible future) architectures is non-trivial. It is pointed out
that optimisations can be focused on “hot spots”, parts of target code that are exe-
cuted frequently.

2.7 Optimising Hot Paths in a Dynamic Binary Translator

A hot path is a sequences of native instructions (including branches) that is executed
frequently so that optimisation pays off. Ung and Cifuentes demonstrate a method



to find and optimise Hot-Paths. By moving and/or merging basic blocks in the hot
path the locality of translated code is increased. This makes caching more efficient.
Frequent executions justify strong optimisation. [17]

2.8 Dynamo

Bala et al. present a method for transparently optimising a native instruction stream
before it gets executed. The key concept is to interpret the instruction stream until
a hot-path is found which is a good candidate for optimisation and caching. The
main optimisation of traces are redundancy removals which are applied for branches,
loads and assignments. Removed branches may have side effects like changing the link
register on a branch with link. Signals may be problematic since the original signals
context may not be available due to optimisations (reordering of instructions, dead
register elimination). Dynamo intercepts all signals. Uncritical asynchronous signals
like keyboard events are queued and handled after executing the current trace. For
timing critical signals the signal context is rectified. Dynamo uses a cache manage-
ment that flushes the cache whenever the trace selection rate grows (indicating new
hot-paths and therefore a new working set in the executed program). [1]

2.9 BinTrans

Machine-adaptable dynamic binary translation can be achieved without an interme-
diate representation as shown in [13]. The translator is directly created from two
machine descriptions. Retargetable translators have to deal with changing numbers
and different widths of registers for host and target architecture and therefore need
register allocation. BinTrans uses a matching algorithm to find appropriate host in-
structions for a target instruction. Probst et al. point out some further important
aspects of binary translation [14]. Efficient handling of condition bits is a key issue of
fast binary translation systems. Computation of dead condition codes can be elimi-
nated through simple liveness analysis. Register mappings should be static whenever
possible (host architecture has enough registers). Self-modifying code needs to be
identified at runtime to prevent execution of out-dated code.

3 Gameboy Structure

The Gameboy is a portable gaming console by Nintendo which was released 1989
in Japan and since then sold over 100 million times. Until now a several hundred
cartridges (mainly games) are available [11]. A later version was equipped with a
colour display. We will refer to the original gameboy with grayscale LCD as ”target



system”. Physically it consists of the gameboy itself (with no operating system) and
an exchangeable cartridge which may contain hardware suitable for a specific software
program (game). [12] describes internals of the gameboy.

3.1 CPU

The CPU used in the target system is based on the Z80 CPU [5] and runs at 4 MHz.

The newer versions of Gameboy (Gameboy Color) support a special doublespeed
mode, which can be activated dynamically during execution of a program. In this
mode the CPU (and some internal timers) are clocked at 8 Mhz.

The main differences to the Z80 are: The target architecture has neither IX and IY
registers nor the I and R registers with their corresponding instructions. Furthermore
it has no alternative register set. Most 16 bit memory access instructions are missing
and there are less 16 bit arithmetic functions. On the target architecture memory
mapped I/O (MMIO) is used instead of the in/out instructions. Besides the execution
time of all instructions is rounded up to a multiple of 4 cycles - therefore we count
4 cycles as one logical cycle. This is the convention when referring to ”cycles” from
now on.

3.1.1 Registers, Flags

The target CPU has seven 8 bit registers of which one is the accumulator (A). The
other six 8 bit registers (B, C, D, E, H, L) can also be used in pairs forming three 16
bit registers (BC, DE, HL) mainly used for addressing. Further registers are the 16
bit wide program counter (PC) and stack pointer (SP). Many instructions set one or
more of the four condition codes (flags): Zero, Negative, Halfcarry and Carry.

3.1.2 Interrupts

The interrupts on the target system are (ordered by priority): V-Blank, LCD Stat,
Timer Interrupt, Serial Interrupt and Joypad. Each interrupt can be enabled or
disabled separately using the Interrupt Enable Register (via memory mapped 1/0).
The Interrupt Flag Register signals whether an interrupt is pending. Interrupts can
be disabled and enabled globally by CPU instructions (EI and DI). Each interrupt
vector is located at a fixed memory address starting at 0x40, 8 Byte for each. Before
an interrupt handler is executed, the PC is pushed onto the stack, all interrupts
are disabled and the corresponding interrupt flag is reseted. The RETT instructions
enables interrupts again. The HALT instruction puts the CPU into an idle state
(powersaving) from which it can be waken by an interrupt.
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3.2 Memory Organisation

The address bus is 16 bit wide which results in an address space of 64 KB which is
universally used for RAM, ROM and MMIO.

Some areas of the address space are switchable banks increasing the addressable
memory.

3.2.1 Cartridge ROM

The lower half of the address space (32 KB) is used by the cartridge which can be
used in principle very flexible but in practise one of a few standard memory controllers
(called MBC) is used. They divide the address space into two blocks (16 KB each)
which one of is fixed mapped to the lowest bank of the ROM (bank 0) and the other
one switchable (bank 1 to n-1) by write accesses to some specific cartridge addresses.
Cartridges typically provide 16 to 2048 KB of ROM.

3.2.2 RAM

The target system provides 8 KB of RAM for general purpose (Working RAM or
WRAM: 0xc000-0xdfff). Further 8 KB are used as video RAM (VRAM: 0x4000-
0x7ftf) and 160 Byte as the Object Attribute Memory (OAM: 0xfe00-0xfe9f) which
is used by the graphical subsystem described in section 5.2. The higher part of the
address space (HIRAM: 0xff80-0xfffe) has several specific locations used for different
MMIO tasks (sound registers, LCD registers) the remaining space of HIRAM can be
used as RAM. We refer to this mixed area as HIRAM.

3.2.3 Cartridge Extensions

Some cartridges have additional hardware as mentioned above. Some important of
these optional functionalities are a real-time clock (RTC) and a battery backed SRAM
for non-volatile data (savegames etc.).

3.3 LCD

The LCD of the target system is 160 pixels wide and 144 pixels high and capable of
displaying 4 grayscales - 2 bit per pixel (The Gameboy Color is capable of displaying
32768 different colours). The vertical refresh rate is 59.73 Hz including a V-Blank
interval of 10 scanlines.
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Figure 1: Memory Organisation Overview

3.3.1 VRAM Organisation

The VRAM is no linear representation (like a framebuffer) of the displayed picture
but a rather complex tile oriented data structure. A visible image consists of three
overlayed layers. Each layer is constructed out of tiles which are bitmaps, 8 by 8
pixels in size, consuming 16 Byte each. Each pixel has a 2 bit colour index. This all
divides the VRAM into two logical parts. One for tile bitmaps (tile table) and one
for the organisation of tiles.

1. The Background Layer: The virtual background consists of 32 by 32 tiles
(256x256 pixels). Technically it is stored as an array of indices into the tile
table where one tile can occur multiple times. The visible part is positioned on
this background by x and y coordinates and wraps around at the borders. It
can be switched on and off.

2. The Window Layer: It is organised similar to the background layer and
overlays the background. The Window is a rectangular area reaching from a
specific x and y coordinate to the bottom right corner of the visible background.
It can be switched on and off.

3. The Sprite Layer: The OAM consists of 40 data structures each representing



one sprite. A sprite consists of one tile index (or two in special cases), a position
and some attribute flags (e.g. flipping, palette number). For sprites the bitmap
is interpreted in a special way, such that colour index 0 makes it transparent
resulting in three usable colours for sprites. Furthermore a special flag indicates
that the sprite is displayed only where the colour index of the background
(window) is zero.

The target system utilises one colour palette for background (and window) and two
for sprites. Each of the four indices (for object palettes three as mentioned above)
can be dynamically assigned to one of the four grayscales. It should be noticed that
all of the described parameters (e.g. coordinates, on/off flag) can be changed at any
time especially within one LCD frame and they are applied immediately.

For the Gameboy Color the VRAM area is switchable (there are two banks 0 and 1).
Bankl is used to store Gameboy Color specific data: additional and bigger colour-
palettes, new sprite attributes and mirroring parameters for all tiles.

3.4 Additional Hardware

Timer, several sound chips, keypad and the serial interface, which are not described
in detail for now, complete the target system. A special DMA controller is used
to fill the Object Attribute Memory from an arbitrary source address. During the
DMA transfer the CPU must not access any address but HIRAM. Therefore a small
procedure initialising such transfers has to be installed in HIRAM.

4 Apple iPod

4.1 Hardware

An Apple iPod of the fourth generation with grayscale display is taken as the host
system. A System-On-Chip with dual ARM7TDMI microprocessors running at 75
MHz (other frequencies are possible) is used. 32 MByte of SD-RAM are shared by the
two processors over two separate 8 KByte caches (no cache coherence). Additional
96 KByte of (faster) uncached SRAM make communication between the processors
efficient. The display of the host architecture nearly matches the target architecture’s.
Its size is 160 by 128 pixels with 4 grayscales. The vertical mismatch forces target
simulation to cut off 16 scanlines or downscaling. The host systems touchwheel can
be used to sense the absolute position of touch points and is, like the LCD, accessed
in a direct way. All other used hardware is accessed through the operating system
drivers and therefore not described in detail.



4.2 Software

Because of a lacking full-featured memory management unit the GNU/Linux oper-
ating system on the host system uses a ucLinux kernel, a lightweight version of the
Linux kernel specialised for systems without MMU [10]. The Gnu Compiler Collection
is used to produce code for the host architecture.

5 Gnuboy Structure

Gnuboy is an open source gameboy (and gameboy colour) emulator written in C and
its aim is to support a variety of host platforms. It abandons floating point operation
and the usage of threads leading to a gain of portability.

5.1 CPU Emulation

The target systems CPU is emulated in a very classical way in three stages: fetch,
decode and execute. All target system registers are combined to a virtual state
residing in the hosts memory. Gnuboy’s approach of system simulation can be roughly
described as follows: First the cartridge memory is loaded into host memory and the
virtual state is initialised. Then the main loop is entered, iterating several routines
simulating one frame. Besides the emulation of the CPU the keypad is polled and
blocks of sound are generated and written to a DSP device which is blocking and
therefore generates the realtime base.

5.2 LCD Emulation

To speed up graphic emulation the tiles are cached in an array with 1 Byte per pixel.
2 Bits are used for the colour index, the others are for the palette number and to
distinguish between sprite and background tiles. Whenever a write access to VRAM
occurs parts of the cache are rebuilt. CPU is executing and potentially changing
parameters of the LCD until a LCD Status Interrupt triggers a scanline draw. Gnuboy
prefers a precise emulation strategy, therefore the unit of consideration is one scanline.
One scanline is drawn in three steps as there are three graphical layers. First the tiles
forming the background are copied to a buffer (from left to right) and their palette
bits are set to the current background palette until the window starts or the screen
ends. Then the window is handled in a similar way. In the last step all 40 sprites
are evaluated if they are contained in the scanline and drawn afterwards replacing
some parts of the background/window depending on their sprite attributes. Again
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the appropriate palette bits are set. Before displaying the scanline on the host screen
the colours are resolved with their palettes with a recolour function.

5.3 Memory Access Strategies

Memory access is crucial for performance and can not be performed directly in the
case of banked memory. For every access the selected bank must be taken into account
to get the full (host) address. Since bank switches are far more seldom than memory
accesses it pays off to rebuild a cache every time a bank is switched. Technically
this cache is composed of two pointer arrays (One for read and one for write access).
The high 4 bits of the address are used as an index into this array, the remaining as
an offset to the stored pointer. Some memory areas can not be mapped in this way
because of side affects (e.g. MMIO). For these cases zero is stored in the array and a
handler function is called on read/write access.

5.4 Interrupt Handling

After each emulated instruction in the CPU loop pending interrupts are handled.
An interrupt is pending if the master interrupt enable bit (IME) and the interrupt’s
IE and IF bits are set. To handle an interrupt, the master interrupt enable bit is
reset, the current program counter is pushed to the emulated stack and set to the
appropriate interrupt vector afterwards.

5.5 Further Features

Gnuboy provides a framework for configuration variables to be set during emulation.
This includes colour values, keyboard mapping, sound options, scaling of the LCD
and others. It is possible to save and load the emulators state.

6 Differences to Gnuboy

In contrast to Gnuboy iBoy provides an integrated GUI designed for the limited
control abilities of the iPod. The biggest difference is the usage of a dynamic binary
translator for instruction set simulation. This leads to some changes like different
interrupt handling. The LCD core is optimised for speed rather than compatibility
or accuracy. To use the host platforms potential iBoy is partitioned and executed on
both processors.
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6.1 LCD Core

As the main goal was to emulate the original Gameboy (grayscale) as fast as possible
on grayscale iPods, we implemented a special LCD emulation module that is faster
than the original method of gnuboy but does not support colours. (For emulation of
Gameboy Color a slightly modified version of gnuboy original LCD engine is used.)
The special grayscale LCD emulation module enables us to reduce the memory needed
by the tiles cache. Each pixel is represented by 2 bits, palette bits as described before
are not stored. The advantages of this format are that it is the native pixel format
of the host architectures display and that 8 pixels (the width of a tile) form a 16
bit word which can be processed more efficient. This pixel format reduces memory
access but needs a lot of shift operations which are cheap on the target architecture
compared to memory operations [8].

The background palette is applied during the creation of the cache - the drawback of
this is, that the cache has to be rebuilt every time the palette changes. It should be
remembered, that changes for palettes and patterns are allowed to happen any time
which may lead to excessive cache rebuilds. For that reason iBoy rebuilds the cache
only once per frame, which is sufficient for most cases. As the background palette is
applied to all patterns in the cache which some of may be used as sprite patterns too,
the need for some compensative palette operations arises when drawing the sprites.

The sprite palette is applied on the fly when the buffer for one scanline is filled.
As transparency is coded as index 0 (and shift operations ”generate” transparency)
sprite pattern entries are exclusive ored with the background colour of index 0 to
restore the transparency to zeros. An efficient function using bit operations applies
the sprite palettes for the remaining three indices. It should be noticed that the
sprite palette must be modified to correct both transformations (for background and
exclusive or) each time the background or a sprite palette changes. This correction
can only be done correctly (without creating artifacts) if all four colours are used
in the background palette which is usually the case. Figure 2 gives an overview of
pattern handling.

This all enables an efficient way to merge the sprites with the background. The back-
ground is cleared (at non transparent areas of the sprite) and a simple or operation
finally merges background and sprites.

6.2 Coprocessor

Another feature to gain performance is load sharing between the two available proces-
sors on the target system. Some restrictions have to be taken into account. The two
processors are not cache coherent - thus all communication has to go over the small
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Figure 2: Comparison of Pattern Handling

SRAM which is uncached. The idea is to statically partition the simulation into two
relatively independent parts which are the LCD simulation on one side and the rest
on the other. This choice was made because of the nearly equal computational effort
of these parts and the relatively small interface (VRAM). In fact such a partitioning
was also chosen in the original target architectures hardware design.

The main processor copies the relevant HIRAM registers to the SRAM and indicates
that a scanline is ready to be drawn. Then it proceeds until another scanline is ready
and blocks until the coprocessor has finished with the previous scanline.

The coprocessor operates vice versa: It waits for a scanline, processes it (as described
in 6.1) and blocks for the next scanline. In the VBLANK interval the main processor
does not send requests for a longer period. This is used by the coprocessor to rebuild
all caches if necessary.

Update: In newer versions of iBoy the main processor (emulating the CPU) does not
block, regardless of the state of the second processor (emulating the LCD). This is
achieved by copying the relevant HIRAM registers into an array, where each scanline
has its own independent space. The second processor can rotate through those scan-
lines and draw them in round-robin order. If the main processor is faster this may
lead to dropped scanlines (or even dropped frames), which is tolerable and does not
influence user perception in most cases.
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7 Dynamic Translation

7.1 Architectural Overview

When the emulator is running, the so-called cpu_emulate function is executed. The
parameter for cpu_emulate determines the duration in target clock cycles the target
system is to be emulated. 17555 cycles of the CPU equal the duration of one frame
forming the internal timebase. Cpu_emulate is periodically executed and emulates
the target system for such a duration. An internal sound buffer is filled during its
execution, which is then sent to a blocking DSP device thus creating the bridge to
realtime. The original frame refresh rate is 59.73 Hz. This is the goal to be reached
by our emulation.

The tasks fullfilled by cpu_emulate include advancing all internal timers, performing
DMA transfers and LCD transitions, handling of interrupts and simulating the target
instructions on the virtual target state. Our work focuses on the latter two points. In
contrast to gnuboy we use a dynamic binary translator to efficiently implement this
CPU emulation.

The key idea is to dynamically (at runtime) translate chunks of target instructions
into blocks of host architecture native instructions which are subsequently executed
([1], [3]). The target program counter (PC) is mapped to a host start address of
translated native instructions. A lookup is performed to find already compiled blocks
in the cache, if it fails the compiler is called, translating one block starting at the
current target PC and caches its translation (the native block). To keep the architec-
ture simple and elegant we decided not to do any classic emulation in parallel. The
drawback is that frequently changing program regions (e.g. self modifying code in
RAM areas) can lead to excessive compiling if no countermeasurements are taken.
Arguments for this decision are that the vast majority of executable target code is
located in ROM areas and that a simple and fast compiler design without too much
(time consuming) optimisations was chosen.

After a native block is executed a new PC is provided and control is returned back to
the lookup mechanism. As basic blocks are rather small (a few target instructions [3])
a further idea to gain performance is linking native blocks and thus minimising the
lookup overhead. [13] Instead of returning to the lookup mechanism, control is directly
passed to the next native block using backpatching (as described in section 7.7.1). It
should be kept in mind that no operating system is used on the target system, target
applications are at a low level and potentially depend on cycle-accurate timing of
hardware interrupts and other components. This implies that the execution of native
blocks has to be suspended periodically to simulate the other parts of the system,
especially internal timers and interrupts and target CPU cycles need to be counted
exactly.
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A big part of the dynamic compiler is generated from an instruction set description
(our so-called in-file).

1. The in-file (mostly host assembler) is translated to C functions capable of pro-
ducing host code for a single target instruction
2. The C functions are compiled into the dynamic binary translator

3. At runtime the binary translator calls the compiled C functions producing actual
host code

7.2 Register Mapping

As shown in Figure 4 the host platform has 16 registers available in the user space.
4 registers are caller-save and used as call parameters by convention. The register
r12-r15 are used for special purposes like as program counter, link register or stack
pointer. The remaining 8 registers are callee-save for general purpose usage.

ZF | NF | HF [ CF| O 0 0 0

T O W >
—moO|m

SP
PC

15[14[13[12]11[10] 9 6[5[4[3[2]1]o0

Figure 3: Target Platform Registers

The registers of the target platform are shown in Figure 3. Ten 8-Bit registers are
available of which one is used as an accumulator and another for the flags. The flags
are formed of 4 Bits (Zero, Negative, Half-Carry and Carry) and accessed implicit by
most instructions. Only two instructions explicitly use them, namely ”push af” and
"pop af”. Eight registers can be accessed as 16 bit pairs which allows them to be
used for 16 bit operations like address calculations. Additionally a program counter
and a stack pointer (each of 16 bit) are available.
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Figure 4: Host Platform Registers with Mapping

When a CPU is simulated, its registers must be stored on the host architecture. When
using dynamic binary translation they are ideally placed in the host architectures
registers. In our special case all target registers fit into the general purpose host
registers if each 16 bit register is stored in a single 32 bit host register so that they
get statically mapped. 8 bit operations using one half of the combined registers are
slowed down since bit masking and shift instructions have to be performed but such
instructions are cheap on arm CPUs. Accumulator and flags are stored in a single
host register each. This is justified by the fact that the accumulator is the most used
register and nearly always accessed in its single form (8 bit register) - in fact only
two instructions (push af, pop af) use the combined AF register. A similar argument
is valid for the flags (F) which are accessed bit wise. The program counter is not
stored explicitly in a register as it is only relevant at compile time and is implicitly
represented in dynamically compiled code.

The big advantage of such a static mapping is that it is inherently simpler than
dynamic register allocation and faster than keeping target architecture registers in
memory. [14]

7.3 Instruction Set Description: in-file

To translate one instruction set to another a precise description of each target in-
struction is a prerequisite. An instruction can be viewed as a function operating on

16



© 00D Ut s WN =

the system state containing registers, memory, condition codes (flags) and some form
of time (e.g. cycles past). Therefore the description has to include inputs and out-
puts of this function as well as the function itself. A similar description of the host
architecture is needed if a generic (portable) approach is chosen. [13] A compiler gen-
erator has to combine host instructions in a way that matches the description of the
according target instructions. A generic matching algorithm can be used for different
host and target architectures - the big advantage of this rather complex approach.
Complexity even grows if highly efficient translations for different architectures (or
even future architectures) is aimed for.

A simpler alternative is to provide the target architectures description in the form of
(hand-crafted) code templates without the need to explicitly describe the host archi-
tecture.Because of the goal to implement a thin compiler without too high complexity
this approach was favoured in our work.

The actually used templates are stored in a text file. It consists of sections (one for
each target instruction) with the following contents:

1. Hexadecimal representation of opcode and opcode name

2. Vector of flag read properties: "R” means flag is read, "X” flag is ignored

3. Vector of flag write properties: 70”7 or 71”7 means flag is set to a constant
value, "R” means flag is written to a computed value, ”X” means flag remains
untouched

4. A body, beginning with "begin{” and ending with ”}”. It consists of the actual
host assembler code that implements the specified target instruction in different

variants.
Listing 1: Example section of the in-file

opcode (0x07) // RLCA
// ZNHC
rf XXXX
wf 000R
begin{

mov rO, r5, lsr #7

orr r5, r0, r5, lsl #l1

if (ALIVE(FC)) {

mov rd, r0, 1sl #4
}
and r5, r5, #Oxff

Within templates it is possible to access the current value of the PC provided by
the compiler. First, this is needed because the template itself has to read immediate
operands of its opcode and second because operations explicitly use the PC (e.g. calls,
relative jumps).
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A major part of the computational resources is used for the calculation of flags. Flags
are not always (or even seldom) used after their computation but overwritten, in other
words, they are dead. This results in an opportunity for optimisation which is realised
through conditional computation of flags: Constant flags are not explicitly set within
a template - the generator and the compiler take care of this. Besides the compiler
provides a vector of flags that are not dead and need to be computed in the template.
A second vector that is provided, represents flags that values are known at compile
time. A template can access these values to generate special versions of the target
instruction that are potentially faster since flag values that are known at compile time
do not need to be checked at runtime.

7.4 The Generator

A generator transforms the template to a C function. Assembler lines are parsed and
translated to C macros representing a 32-bit ARM assembler instruction. Basically
the execution of the C function fills an array provided by the compiler with one ARM
instruction after another, one for each assembler line. As shown in Listing 1, C syntax
can be embedded to access variables from the compiler environment or to add control
flow (e.g. conditional computation of a flag). Lines that contain ”{” or ”}” indicates
C code and are not translated by the generator but copied to the output file (itself a
C file). Listing 2 shows the output of the generator with Listing 1 as input.

Listing 2: Generator output snippet

void op-0x07(int af)
{
xcur _block.genp++ = PM_MOV(COND_AL,0,0 ,REG_LSR(5, 7))}
xcur _block.genp++ = PM_ORR(COND_AL,0,5,0 ,REG_LSL (5, 1));
if (ALIVE(FC)){
xcur _block .genp++ = PM_MOV(COND_AL, 0,4 ,REG_LSL(0, 4));
}

xcur _block.genp++ = PM_AND_IMM (COND_AL,0 ,5,5, Oxff);
cur_block.const0 &= 0x0f;
cur_block.constl &= 0x0f;
cur_block.const0 |= 0xe0;

To reduce programming effort the generator supports a simple text-based macro mech-
anism. Macros can be defined with parameters that are handled in a textual search-
and-replace way which leaves the contents of a macro open - both C and/or assembler
code can be used.

7.5 The Parser

GNU Bison and flex were used to generate a parser which is used to translate a
single assembler line as mentioned above. The goal of the implemented grammar
was to achieve far-reaching compatibility to commonly used ARM assembler syntax
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while keeping complexity low. This enabled us to directly reuse parts of the ARM
assembler CPU core (using classical emulation) we implemented before.

The representation of immediate values is special: Shifted immediates are expected in
binary format by the grammar. Whenever an immediate is expected a C expression
may be used instead. The big advantage of this technique is that templates can utilise
variables provided by the dynamic compiler as immediates. C macros help to make the
usage of shifted immediates in templates more comfortable. Listing 3 is an example
that demonstrates various possibilities of embedded C code in templates. In line 1 the
macro READB stores an immediate value (of the current target instruction positioned
at cur_block.pc) in the globally available C variable ”temp”. Line 2 evaluates the value
of the carry flag: The third line is only relevant if the Carry Flag is not known at
(dynamic) compile time. Finally line 7 shows an example of shifted immediate value
0xft00.

Listing 3: Possibilities of Embedded C Code

{temp=READB(cur _block.pc + 1);}
if (! IS_CONSTANT(FC)){
sub r0, r5, ’temp’

and r0, r5, ’IMM_ROTL(O0xff, 4)’

Another difference to classical ARM assembler syntax is posed by branch instructions.
Labelled branch targets (as well as labels in general) are not implemented in our
design. As branch targets are relative to the current ARM program counter which
may not be known prior to dynamic compile time, absolute branch targets (e.g. a
call of a C function) have to be calculated outside the parser.

The employed attributed grammar basically distinguishes between five types of as-
sembler instructions. These are: moves, branches, compare/test instructions, arith-
metic and memory operations. The complete attributed grammar can be found in
the appendix.

7.6 Compiler

The compiler uses code templates (one for each target instruction) that are stringed
together to form a native block. Each code template is a C-function (generated as
mentioned above) that receives parameters to produce a specific variant of a target
opcode. Technically these functions are organised in a function pointer array that is
indexed by the target instructions binary 8-Bit opcode.

In a first step the compiler scans the target instructions (top-down) to find the end of
a basic block indicated by a terminating instruction (ENDOP) e.g. jump instruction.
Cycles for each target instruction seen are counted. The subsequent pass is bottom-
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up to enable some liveness optimisations. Finally host instructions are produced in a
third top-down pass.

7.6.1 Flag Constant Propagation
Flag Constant Propagation has three aspects:

1. Flags that are unconditionally written to a fixed value by a target instruction
(constant flags) do not need to be written within an uninterruptible block but
at the end of it.

2. Because constant flags are not written to the virtual flag register, each template
has to be parametrised to produce a proper version of the target instructions
native equivalent without reading constant flags at runtime. This means that
the constant flag vector MUST be considered within the template - the virtual
flag register contains no information about these flags (compare with ARM
instruction set description [9]).

3. Constant flags must be recalculated by each template at dynamic compile time
- this provides the propagation of constant flags.

As constant propagation is mainly located within template functions it is performed
in the final top-down pass of the compiler. The algorithm uses two global bit-vectors:
const0 and constl. Before any template function is executed the bit-vectors are ini-
tialised with zero, meaning no flags are constant. Template functions query this
vectors by the C macro IS .CONSTANT. At the end of a template function the values
of const0 and constl need to be recomputed to propagate constant flags to the suc-
cessive template function. First the bits for flags that are written (either constant or
not) are reset in const0 and constl. Second the bits for flags that are written constant
are set in the corresponding const bit-vector.

At the end of one basic block where interrupts are possible a consistent virtual state
has to be provided by templates that terminate a block (ENDOPs): The compiler
function set_constflags is called which simply adds a few instructions that store an
accumulation of all prior constant flags at runtime.

7.6.2 Flag Liveness Analysis

As mentioned before flag computations may be unnecessary as flags are overwritten
without being read before. Flag liveness analysis has the goal to avoid such compu-
tations. It is mainly accomplished in the bottom-up pass of the compiler. An array
of flag vectors is filled, which is used in the final (code generating) top-down pass to
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parametrise the template functions. The basic idea is that each target instruction
tells its predecessor which flags are alive and need to be computed. Assume that in-
structions are numbered ascending inside one block: A flag is alive for an instruction
n if it is read by instruction k (with & > n) and none of the intermediate instructions
i (k < i < n) overwrite the flag. Control flow within templates (compare with line
9 of Listing 1) provides that computation of dead flags is not dynamically compiled
and therefore not executed at runtime. As the last instruction of one block has no
distinct successor (it may be a conditional branch and interrupts are allowed after
one block) the compiler has to decide which flags are alive for this instruction. In
a first simple approach, all flags are assumed to be alive at the end of the block. A
more sophisticated way to find alive flags is to consider all possible successors (this
may include interrupt handler functions) and to treat a flag as alive if it is alive in
all the possible successors. Applying the rules described above this means that a flag
is alive if the first operation on this flag is a read (and dead if it is a write operation)
for one successor. As further instructions with more than one successor can appear a
tree is spanned. At the moment this lookahead mechanism to find alive flags for the
last instruction of a block is not fully implemented.

7.6.3 Block Termination

One of the key issues of the architecture is the handling of basic blocks. They not only
need to be dynamically compiled but must be glued together while keeping timing
information cycle-accurate. Basic blocks are terminated by so-called ENDOPs. These
can be either operations where control flow forks (e.g. conditional jump, computed
jump) or such that require block termination for special reasons like interrupts (e.g.
halt, enable interrupts).

At the end of one basic block, basically the following tasks must be performed:

1. The size of the basic block, in target CPU clockcycles, must be counted. This
is needed for cycle-accurate emulation of the rest of the system.

2. Control has to be passed back to the main loop, which takes care of the former
mentioned system emulation.

3. The value of the new target program-counter has to be returned (as it is part
of a proper virtual state after one basic block).

We combine these tasks in a structure called linkblock. They may be specific for
each ENDOP and are therefore implemented in the template functions. To make
programming of these tasks effective, generic support functions located in the compiler
are called.
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With the forking nature of ENDOPs the need for multiple linkblocks in one native
block arises. The decision which one of these linkblocks is actually executed commonly
depends on the value of a flag. In other words linkblocks may be skipped which is
realised through the insert_skip function that receives the condition as parameter.

During the execution of a native block the host register r9 is reserved for counting
remaining target CPU cycles. It is initialised in the control loop to a value that
indicates the duration that may be spent in native blocks. A linkblock begins with a
call of linkblock_begin (at dynamic compile time) which inserts the host instruction
sub to decrease the cycle counting register by the target CPU cycles spent in the
current basic block. As ENDOPs may have different cycle counts depending on
the chosen linkblock (e.g. conditional branch) the cycles that were counted in the
compilers first pass need to be corrected, since by default the highest number of cycles
possible for an ENDOP is counted by the compiler. Linkblock_begin gets a parameter
of delta cycles to fulfil this correction.

By convention an ENDOP template has to ensure that the value of the next PC
resides in temporary register rl before calling linkblock_end which compiles in the
jump back to the control logic.

If an ENDOP template calls insert_skip to conditionally skip a linkblock, first of all
a placeholder instruction is inserted in the native block that is subsequently replaced
by a conditional branch when calling linkblock_end (the branch offset depends on the
previously unknown linkblock size).

7.7 Cascading

Especially for small basic blocks frequent returning to the control logic poses a great
overhead. A complete virtual state (including PC) is needed to emulate other system
parts and to look up the next basic block. This overhead can even nullify performance
gained through dynamic translation. Basic blocks themselves can not be easily en-
larged but chained together in order to reduce overhead. The return instruction to
the control loop as described before is replaced by a direct branch to the successive
native block. This can be done if the successor is known at dynamic compile time
(static successor) and pays off through less lookups (PC needs to be returned less
often) and system emulation in larger junks.

7.7.1 Backpatching
A technique called backpatching is applied to chain blocks together. Linkblocks with

static successors are compiled differently to be prepared for patching: instead of the
PC a pointer to a data structure (located at the end of the linkblock) is provided
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in rl. Besides the PC this data structure contains a pointer (patchpointer) to the
patchable area within its linkblock. The return to the control logic is replaced by a
branch to a special patching logic. This means that whenever such a linkblock gets
executed control is passed to this patching logic (which actually removes the jump to
itself). It uses the stored PC to look up the native successors or even compile it to get
its start address. Then it inserts a jump instruction to this address at the location
stored in the patchpointer.

7.7.2 Dynamic Cascading

Dynamic compilers that operate on user level can handle system calls on a high
level. Often target system calls can be mapped to host system calls and host system
interrupts suspend the execution of native blocks. For example a timer interrupt can
be registered on the host system that interrupts the execution of native blocks after a
certain time measured in host system cycles. This may violate relative time coherency
in the emulated system. For many applications this is acceptable to a certain degree.

Our target platform has no operating system that abstracts hardware. Therefore
high level emulation cannot easily be applied because target applications (especially
interrupt handlers) may access hardware in an arbitrary way. Accurate timing is a
prerequisite for most target applications found.

Interrupts may occur at every virtual target clock tick and must be handled imme-
diately to guarantee exact emulation. To realise this requirement execution of basic
blocks would have to be suspended. This contradicts to the atomic nature of our
basic blocks: Within basic blocks the virtual system state is incomplete and would
have to be completed on an interrupt.

This is not supported in our design and would require complex changes to our archi-
tectural style that seem not too promising to us. Anyway it is worth to be kept in
mind for future work.

As mentioned above native blocks are chained together to improve performance -
but this virtually increases block size as control is not returned to the control logic
between chained basic blocks. To solve the dilemma we decided: The execution of
one basic block may not be interrupted. Basic blocks are not cascaded statically but
through conditional branches taking into account how many cycles passed since the
last invocation of control logic. Together with an upper limit for basic block sizes the
resulting loss of accuracy is kept bounded.

The timing accuracy is determined by two parameters: MAX _BASIC_BLOCK_CYC
and CASC_CYC. MAX_BASIC_BLOCK_CYC is the upper bound for cycles con-
sumed by one basic block. This means that large basic blocks are broken into several
native blocks by the compiler (only the last of these is terminated by an ENDOP).
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The control logic initialises the cycle counting register to the value of CASC_CYC
before execution of a series of cascaded native blocks is started. Whenever execution
reaches the end of a native block the cycle counting register is decreased accordingly.
If cycles are remaining (counting register > 0) the conditional branch to the succes-
sive block is taken, otherwise the cascade is intermitted. The control logic is able to

calculate the target cycles spent in native blocks by subtracting the counting registers
value from CASC_CYC.

Maximum cycles spent in a native cascade can be calculated:
CASC_CYC + MAX_BASIC_BLOCK_CYC - 1.

After some instructions that demand immediate interrupt handling the cascade has
to be broken in any case. The patching logic inserts an unconditional branch back to
the control logic for such instructions (e.g. halt).

Compared with static cascading our dynamic cascading has the disadvantage of pro-
ducing overhead due to frequent interrupts of the native instruction flow. As a coun-
termeasurement this interceptions are kept as short as possible by eliminating the
need for lookups of native successors that point the way back into the chain: The
backpatching algorithm inserts a datastructure into the linkblock containing PC and
the start address of the native successor. A pointer to this datastructure is passed to
the control logic when the native cascade is left.

7.7.3 Loop Detection

An alternative to some cases of backpatching can be realised in the compiler. If the
native successor is known it would be possible to directly compile in all instructions
needed for cascading at dynamic compile time. This principle could even be applied
recursively ( a tree of basic blocks would be compiled as a whole). The downsides
of such an approach are that "unused” blocks might be compiled, the principle of
locality is violated and compile time is not spread over runtime. We found it more
elegant to solely make use of backpatching with just one exception: Basic blocks that
have themselves as successors are not backpatched but directly modified (within the
compiler) to support chaining of "micro loops” even if they are temporary compiled.
The start address of such a block is obviously known without a lookup.

7.8 Handling of Interrupts

Fast and accurate interrupt handling is the drive of our architecture. Interrupts have
to be handled in a periodic manner between the execution of native blocks which
therefore have to provide the target PC as it is expected to be on the stack when the
handler routine is entered. It should be noticed at this point that within the control

24



logic either the PC (interrupt occurs) or the native successor (no interrupt occurs) is
needed. That justifies the usage of the datastructure in the linkblock described above
as it is filled only once during dynamic compiletime and read with just one memory
access during runtime. Providing the pointer to this datastructure on return to the
control logic does not even consume a single additional cycle: Clever positioning of the
datastructure (immediately behind the branch instruction back to control logic) and
using a branch with link instruction effects the link register to contain this pointer.

In principal interrupt handlers are compiled as any other code but their a priori known
start addresses allow to bypass the lookup mechanism: An array of native addresses
(one for each interrupt handler) is kept in memory. On the occurrence of an interrupt
a jump to the according native address is performed - in fact a single load to the host
systems program counter is executed. Interrupt handlers are not precompiled, instead
the array is initialised with addresses of special wrapper routines that facilitate the
compiler to translate the corresponding interrupt handler to host code, replace the
arrays entry with the resulting start address and branch to it.

7.8.1 Block Size

Speed and accuracy are conflicting goals as increasing block size improves perfor-
mance while causing lateness and jitter of interrupts and therefore potentially altered
program flow. We have empirically determined that 32 cycles is a good choice for
both CASC_CYC and MAX_BASIC_BLOCK_CYC keeping nearly every tested target
application running correctly. Increasing cycle parameters too much results in dra-
matic loss of compatibility that often manifests in freezing applications. It should be
noticed that 32 cycles is a rather small value that implies highly frequent execution
of control logic which justifies greedy assembler code for its implementation.

7.9 Compiler Cache

It is obvious that execution of dynamically compiled code has runtime advantages
compared to classical interpreters. Nonetheless dynamic compilation poses an over-
head that must be justified with speed gains. In general several executions of compiled
code are needed to compensate dynamic compiletime. Therefore compiled blocks have
to be kept in a cache. [3] [4]

The caching mechanism must support a mapping of target PC to (host) start ad-
dresses of cached native blocks. Two aspects must be taken into consideration: The
structure for storage of native blocks and the mechanism to find a specific block,
which is in most cases some sort of index. Often only a subset of already compiled
blocks can be held in the cache at once. For that reason replacement strategies must
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be implemented. [1]

7.9.1 ROM Cache

For now we have chosen rather simple caching strategies. In our target system memory
can be partitioned - we strictly distinguish between ROM and RAM areas for which
we implemented different caching mechanisms according to the nature of these areas.
The implementation for the ROM areas is mainly straight-forward. The native blocks
are sequentially stored in a fixed size area. As contents of ROM cannot be changed
the only reason for invalidating native blocks is a cache overflow (when no more space
for newly compiled blocks is available), which is handled through a complete cache
flush in our system. ROM is banked in the target system to enlarge address space.
For the not switchable bank 0 that spans from the addresses 0x0000 to Ox3ftf an
ordinary lookup table is used that holds the start address of a native block for each
target address. An entry of 0 for a given index (target start address - PC) signalises
that no basic block has been compiled for it yet.

All other ROM banks (1-n) share a common target address space reaching from
0x4000 to OxT7ftf. A switch of the bank changes the contents in this area which can be
seen as a special case of self modifying code as the active bank can only be determined
at runtime. This implies that the backpatching algorithm cannot designate a distinct
successor at dynamic compile time when cascading into or even within such an area.
But this implication can be weakened through the assumption that bank switches
do not occur while the program counter resides in a switchable bank. In fact this
assumption holds for all tested applications and allows the following implementation:

In the switchable area the backpatching algorithm can unambiguously determine
the address of a successive basic block (it chooses the block within the same bank).
Cascading from areas where switching is possible (e.g. ROM bank 0) to the switchable
area is the only case where no distinct successor is known. We simply do not backpatch
in this case - a lookup at runtime is accepted.

The lookup tables for the switchable area are organised two-staged. For each bank a
separate lookup table similar to the one described for bank 0 is used. On a lookup
in a first step one of these lookup tables is selected according to the current ROM
bank number. Afterwards the PC is used to index this table and the start address is
resolved.

7.9.2 Ram Cache

RAM areas demand a more complex handling: Before executing a cached native block,
it has to be guaranteed that the corresponding target opcodes have not changed since
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their compilation. [2]

Our target system has several areas of RAM of which only one (the HIRAM) is cached.
This HIRAM area is used by nearly all target applications (for technical reasons -
when DMA transfers are used) and is only 128 bytes in size. A bitmap is used to
mark areas of the HIRAM that are already compiled, one bit represents one HIRAM
byte resulting in a bitmap size of 16 byte. Write access to the HIRAM is processed
through function calls that check if already compiled bytes are affected - the separate
HIRAM cache gets flushed in these cases. Native blocks within the HIRAM cache
can be cascaded but due to separation of ROM and RAM caches cascading from or
to the HIRAM cache cannot be done easily (independent cache flushes) and is not
implemented yet.

Update: The latest version of iBoy supports caching of compiled blocks that belong to
all sorts of RAM (it is no longer limited to the small HIRAM area). Each basic block
of these areas is compiled and then stored in a separate memory structure (called
temp_block), that can be flushed independently. Every such memory location must
be big enough to store wort-case sized compiled blocks, which results in some waste
of memory. Besides the actual compiled block, this structure holds the target PC of
this block, its size and 32-bit checksum.

When a new block in RAM is compiled, the lowest bits of the PC (program counter of
target architecture) are used to index an array that consists of temp_blocks. With this
simple form of hashing about 256 to 1024 temp_blocks are needed to get an acceptable
rate of collisions (different basic blocks share the same temp_block) in practise. After
a block is compiled to its temp_block and the PC is inserted, the checksum for this
basic block is computed and stored in the temp_block.

Listing 4: checksum computation

inline unsigned int compute_crc(int pc, unsigned int len) {
unsigned int ret=0, temp;

while (len——) {
temp = readb (pc++);
asm (7 eor_%0,%1,%0,_ror #8”: ”+r” (ret) : ”"r” (temp));
// XOR and rotate right 8 Bits

return ret;

The checksum is calculated over target opcodes of the basic block. Each byte of this
basic block is successively xored on a zero initialised 32-bit value which is rotated
right by 8 bits after each iteration (see code).

After the first compilation and initialisation (PC, checksum) the native part of the
temp_block can be executed directly. When the same block is to be executed again, the
lookup mechanism has to assure that it is still stored in the appropriate temp_block
and that the memory containing the corresponding basic block has not changed. This
is done by reading the PC stored in the temp_block and computing the checksum of
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the bytes in RAM occupied by this basic block, which must match the one in the
temp_block structure.

To avoid the timeconsuming lookup mechanism as often as possible, the compiler
inserts a call to a special function ”check_crc¢” as the very first instruction in all
temp_blocks. This function not only checks whether the contents of temp_block are
up-to-date but also updates the temp_block if needed calling the compiler. As this
function is executed transparently to the temp_block caller (lookup mechanism or
predecessor block), it is even possible to link and cascade blocks in RAM area.

8 Summary of Improvements for the Latest Ver-
sion of iBoy

Besides the two biggest changes involving Gameboy Color support and caching of
RAM areas (already described in Section 6.1 and 7.9.2) many other (smaller) changes
were made to iBoy that improve performance, compatibility or user interaction.

A new version of the gnu gcc toolchain was used, that solved some problems with mem-
ory allocation and improved performance a bit. Besides the 4th generation grayscale
iPod, many other iPods are now supported to run iBoy (including those with colour
LCDs). An example for improvements in the user interface is a graphical filebrowser.

Most of the hand crafted assembler templates representing target opcodes that read or
write to/from memory (especially those that access HIRAM) were optimised. Instead
of calling a function that computes the memory location (in upper address space) at
runtime (depending on the PC), parts of these computations are done at compiletime.

9 Evaluations

9.1 Correctness

Correctness of software is hard or even impossible to prove, especially for complex
software as dynamic translators. But we can give some evidence that indicates some
degree of correctness. Two aspects can be taken into consideration. First the intro-
duction of blockbased emulation and second the correctness of the translation of such
a block and its execution.

The introduction of blocks as described in section 7.1 changes runtime behaviour. It
is desirable that these changes have only marginal or no influence on the behaviour
of the full system as percepted by the user. A testing script automatically started
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the block based emulation system with a wide variety of applications and took a
screenshot after a certain amount of time. An inspection of these screenshots and
various interactive manual tests lead us to the assumption that with a blocksize of 32
nearly all applications run without noticeable sideeffects.

To enable a stepwise and verifiable implementation of the dynamic binary translator
a blockbased version of gnuboy was implemented and used for the first run of com-
patibility tests described above. To keep emulation running and test the partially
implemented binary translator (instructions were implemented one after another) the
block based CPU core was used in parallel to the translator. State comparisons en-
sured that blocks were semantically equivalent processed in both implementations.
In case of a discrepancy of states emulation was stopped with debug outputs.

In the final version even excessive testing did not reveal any more discrepancies which
leads to the assumption that the implemented dynamic translator is correct, at least
to an admissible degree.

9.2 Performance

To measure the performance of the dynamic translator with a high level of objectivity
following preparation have been taken: The interface to the graphical subsystem was
given an unidirectional data flow to ensure that the main processor (and therefore
the CPU emulation) is not slowed down due to backpressure from the LCD routines.
A consequence of this is that scanlines are dynamically skipped in case when the
graphical subsystem would get a bottleneck.

An automatic mechanism is implemented to measure the realtime passed for a specific
period of emulation. This period is defined through a start and a stop frame number.
We decided it to be 1001 frames long - that corresponds to approximately 17 600
000 CPU (or Idle) cycles. The measurement does not start at the very beginning of
the emulation (first frame) but after 500 frames to avoid influences of initialisation
processes in the results.

To have a good reference only the dynamic translating CPU core was replaced by the
CPU emulation core of the original gnuboys C implementation - the rest of the system
is (except for some minimal needed changes) exactly the same. For all benchmarks
the whole sound subsystem was disabled - together with the loosely coupled graphi-
cal subsystem this ensures benchmark results mainly correspond to CPU emulation
performance.

Figure 5 show the characteristics of ten applications used for our benchmarks. During
execution the program counter resides in different memory areas. The diagram shows
the ratios of these areas (dynamically counted in cycles within the 1001 benchmarked
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Figure 5: Benchmark applications with used memory areas

frames) which are important to know because different caching strategies (as men-
tioned earlier) apply for each area. Another important information to be noticed is
the idle-ratio of the CPU.

Applications marked with * were measured with user interactions. As this gives
slightly different results for each run, the mean of three runs was taken. All other
applications have some form of demo mode (typical application scene or intro that
produces a representative workload compareable to interactive application usage)
where no user interaction is needed.

ROM || MAR | ZEL | TUR | TET | LUC | BAL | LOO | RAC | BOX | MA3
OPS 4.19 3.47 | 4.82 3.09 3.44 3.87 6.08 4.64 6.53 3.33

Table 1: Blocksizes counted in operations

The sizes for basic blocks were determined dynamically within the 1001 measured
frames (of course in a separate run), averaged and shown in table 1.

In figure 6 the performance relative to realtime is shown. Different applications with
different optimisation options for dynamic binary translation and the C interpreter
are compared with each other. Applications with high idle ratio tend to perform
better with all implementations. But simulating idle time is still rather expensive as
timers, interrupts and other components have to be emulated making performance
gains less than one would expect. With the interpreter realtime is only reached for
three of the benchmarked applications; with dynamic translation on the other hand
for all of them.

The rate of computed jumps (JP HL and RET instructions in our case) as shown in
table 2 has little influence on performance and seems not to allow conclusions to be
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Figure 6: Performance Comparison of Implementations, Realtime=1

ROM MAR | ZEL | TUR | TET | LUC | BAL | LOO | RAC BOX | MA3
COMP JP 9.1% | 3.8% | 17.0% | 2.1% | 1.3% | 3.6% | 4.2% | 12.7% | 15.7% | 1.5%

Table 2: Percentage of taken computed jump in relation to all block ends

made directly.

The relative performance (compared to the interpreter) is shown in figure 7. As the
emulation of the idle loop is not faster with dynamic translation the most significant
performance gains can be reached with applications with no idle times (TET, LUC,
BAL, MA3). A special case is the application ”TUR” as it is the only one that makes
significant usage of RAM for executable code. Yet no caching strategy is implemented
at all for the RAM area (as blocks are not cached they need to be compiled every
time before they are executed), explaining the poor performance of this application.

Update: This is no longer true for the new version of iBoy where all RAM areas
are cached as well (see section 7.9.2). It will be shown later that this significantly
influences performance of application "TUR”.

Figure 8 shows how optimisation options of dynamic translation increase the perfor-
mance (in % compared to a version with all optimisations turned off - except constant
propagation, which is embedded into opcode definitions and cannot be disabled). The
first optimisation that was benchmarked is patching (without cascading). In this case
native blocks get patched so that control flow is always returned to the main loop
after their execution but the address of the native successor is passed back if possi-
ble. Therefore lookups can be omitted for all kinds of uncomputed jumps. Patching
in general increases performance only slightly (less than 5%) because lookups are
relatively cheap, it might pay off for more complex lookup mechanisms.
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Figure 7: Performance gains through DT, original C Interpreter=1
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Figure 8: DT speedup through optimisations
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The next level of optimisation benchmarked has dynamic cascading turned on (with
patching enabled - which is a prerequisite). This virtually increases the blocksize to
a given limit (determined by CASC_CYC and MAX_BASIC_BLOCK_CYC). Many
returns to the control logic can be omitted, this especially applies for applications with
small application specific basic block sizes (e.g. TET). Figure 8 shows the significant
speedup due to cascading with CASC_CYC and MAX_BASIC_BLOCK_CYC set to
32. Different characteristic basic block sizes of applications result in different potential
for performance gains through dynamic cascading.

The highest level of optimisation (all opt on) has liveness analysis optimisation in
addition to those mentioned earlier enabled. Flag liveness speedups are in the order
of a few percent (0% to 6% in our case). The performance degree seen at "TUR”
is mainly an effect of error of measurements (interactive benchmarking used). The
impact of liveness analysis depends on the amount of dead flag computations. As
flags are assumed to be alive at the end of blocks larger basic blocks increase the
probability for dead flags. Nonetheless application specific code style (that is not
measured) has even more influence. Therefore block size does not strictly correlate
to effectiveness of flag liveness analysis in our measurements.

1.40

1.20 — -

100 4y lh—1 | T —]

0.80 -+ 1100

0.60 | [ 64
I 32

0.40 — 16

0.20 W

0.00 -1 L 3 4

MAR ZEL TUR* TET LUC BAL* LOO RAC* BOX MA3
Figure 9: DT with different block sizes, blocksize32=1

Finally figure 9 shows the effect of dynamic block sizes on performance (CASC_CYC
= MAX BASIC_BLOCK_CYC = [4,8,16,32,64,100]). Applications marked with *
did not allow meaningful measurements at large dynamic block sizes due to incorrect
emulation. In fact the rather small value of 32 cycles for dynamic basic block size
seems to be near the upper limit to ensure correct emulation. Increasing dynamic
block size seems to increase performance in a logarithmic way. Anyway the actual
dynamic block size may vary depending on the amount of computed jumps and other
effects (see section 7.7.2). So the results of measurements do not exactly follow this
rule.
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9.2.1 Performance Impact of RAM Caching
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Figure 10: Latest Version of iBoy, RAM Cache

In figure 10 the performance of the general improvements described in 8 and the
impact of the RAM caching mechanism can be seen. All values are ratios in respect
to realtime (for comparison the performance values of figure 6 are repeated). All
benchmarked applications experienced speed improvements in the range from 20% to
80% with this general improvements of the new version of iBoy (a blocksize of 32,
and all optimisations) enabled.

The only application that makes significant usage of RAM is "TUR”, so this is the
only one that benefits from RAM caching. With RAM caching enabled the execution
speed of "TUR” is nearly twice as high as without and finally in the range of the
other benchmarked applications. The total speedup compared to the old version
(white bar) is over 230%. Repeated checksum checks (and possibly collisions in the
hashtable) are responsible for the slightly worse performance compared to most of
the other applications.

10 Future Work

There are still some parts in iBoy that have to be improved.

The huge lookup tables could be replaced by a more sophisticated hash mechanism
resulting in a smaller memory footprint.

A liveness lookahead mechanism could calculate dead flags beyond the scope of one
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basic block. This could prevent further unnecessary flag calculations. Various opti-
misations on register level (lifelines, constant propagation)

could further increase performance.

Dynamically changing cascading block sizes might improve performance while keeping
the desired level of emulation accuracy. Other more challenging modifications of the
dynamic translator could include a trace based approach of caching and optimisation
or even a complete new architecture for interrupt handling.

11 Conclusion

Dynamic binary translation can be efficiently applied for system level emulation where
applications have direct access to hardware and accurate timing is a prerequisite. It
is even applicable for host systems without a memory management unit at least if the
emulated target system does not have one either. Compared to a classical target code
interpreter our dynamic binary translator executes target code (including interrupts
and idle time) at least twice as fast, provided that a caching strategy for RAM areas
is implemented. Speedups in this order of magnitude (up to over 350% compared
to the interpreter) can even be reached with a lightweighted compiler that sets aside
expensive optimisations. A fast assembler optimised interface between dynamically
compiled native code and the rest of the emulation system seems to be a key issue
for our architecture where execution of native code is tightly intertwined with system
emulation.
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Appendix

Listing 5: Lexical Analyzer

1 |%option noyywrap

2

3 | %{

4 |#include <stdio.h>

5 |[#include <math.h>

6 |[#include ”y.tab.h”

7 | %}

8

9

10 (W [ \t\r\n]+

11 [ NL [\n]+

12 [ COMMENT ?@” [ "\n]*”\n”

13 | v 407 ( [0—9a—FA—F]+) |"# ([=17[0-91+)| (\" [ *1+\")
14 | REG 217 [0]7[0=9] |7 r1” [0—5]

15 [ ORBA

16 | CBRA \1

17 | C \,

18

19 [MOV ” mov”

20 | ARI ”add” | ”sub” |7 orr” |”and” | eor” | ”sbc” | ” bic”
21 | CMP Pemp” |7 tst” | ”cmn”

22 |H 7h”

23 B 7b”

24 |MEM ”?1dr” |7 str”

25 | SHIFT ?1s1” |7 1sr”|”asl”|”asr” |”ror”|”rol”
26 | COND "eq” |7ne” | cs” |7 cc? |Pmi” |7 pl”? [P vs” |7 ve? [P hi” |7 1s? [7ge” | 7167 |7 gt? |7 le” |7 al”
27 |'s 7

28 | BL 7 bl”

29

30

31 | %%

32 | {ORBA} {return OBRA;}
33 | {CBRA} {return CBRA;}
34 | {nM}  {

35 if(yytext[0]="\"") {

36 yytext[strlen (yytext)—1]=" ’;
37

38 yytext[0] = ° 3

39 yylval.str = strdup(yytext);
40 return IMM;

41

42 | {REG}

43 //yylval.str=strdup (yytext);
44 yylval .num=atoi(yytext+1);
45 return REG;

46

3
47 | {MOV} {return MOV;}
48 | {ARI} {yylval.str=strdup(yytext); return ARI;}
49 | {CMP} {yylval.str=strdup(yytext); return CMP;}

50
51 | {MEM} {yylval .num = (yytext[0]=="1"); return MEM;}
52 | {H} {return H;}
53 | {B} {return Bj;}
54 | {SHIFT} {yylval.str=strdup(yytext); return SHIFT;}
55 | {COND} {yylval.str=strdup(yytext);return COND;}
56 | {S} {return S;}
57 | {BL} {return BL;}
58 | {C} {return C;}
59
60 | {COMMENT} /* remove comment x/
61 | {W} /* remove ws */
62
63 | %%
Listing 6: Grammar
64 | %{
65 |[#include <stdio.h>
66 |#include <string.h>
67
68 |#define YYERROR_VERBOSE
69
70 | void yyerror(const char sstr)
71
72 fprintf(stderr ,” error: %s\n” ,str);
73 |}
74
75 int yywrap ()
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76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

return 1;

int main(int argc, char xxargv)

}

%o}
Y%token
Y%union

{

}

Y%token
Y%token
Y%token
Y%token
Y%token
Y%token
Y%type
Yotype
Yotype
Yotype

%%

asms :

asm :

cond:

flag:

mov:

arit :

cmp:

mem:

if (arge==2)
stdin = fopen (argv|[1l], 71r”);

yyparse () ;

C OBRA CBRA NUM IMM IMMHEX REG SHIFT COND MOV ARI CMP SC BL MEM H S B

int num;
char =xstr;

<num> H S B

<num> IMMHEX

<str> MOV ARI CMP IMM
<str> COND SHIFT CEXP
<num> REG

<num> BL MEM

<str> asm mem imm

<str> cond flag barrel
<str> mov arit branch cmp
<num> brop memsiz

asms asm

mov {printf ("%s;” ,81);}

| arit {printf("%s;” ,81);}

| cmp {printf ("%s;” ,81);}

| branch {printf("%s;” ,%1);}

| mem {printf("%s;” ,$1);}
{ $$ = "COND_AL”; }

| COND { $$ = malloc(100); sprintf($$, "COND_%s” , str_toupper($1)); }
{88 ="0"; }

| S { $$ =717 }

MOV cond flag REG C barrel {
$$ = malloc(100); sprintf($$, "PM_MOV(%s,%s,%d,%s)”, $2, $3, %4, $6); }
| MOV cond flag REG C imm {
$$ = malloc(100); sprintf($$, "PM_MOV_IMM(%s,%s,%d,%s)” ,$2, $3, %4, $6); }

ARI cond flag REG C REG C barrel {
$$ = malloc(100);
sprintf ($$, "PM_%s(%s,%s,%d,%d,%s)”, str_toupper($1),%2, $3, $4, $6, $8); }
| ARI cond flag REG C REG C imm {
$8 = malloc(100);
sprintf ($$, "PM_%s_IMM(%s,%s,%d,%d,%s)”, str_toupper($1), $2, $3, $4, $6, $8); }

CMP cond REG C barrel {
$8 = malloc(100);
sprintf ($$, "PM_%s(%s,%d,%s)”, str_toupper($1),$2, $3, $5); }
| CMP cond REG C imm {
$8 = malloc(100);
sprintf ($$, "PM_%s _IMM(%s,%d,%s)”, str_toupper($1),%$2, $3, $5); }

MEM cond memsiz REG C OBRA REG C barrel CBRA {
$$ = malloc(100);
switch ($3) {
case O:case 1: // PM_MEM(cond ,L,B,d,n,adr, I,Pre, Upcount(sign), Writeback)
sprintf ($$,”PM_MEM(%s ,%d,%d,%d,%d,%s ,1,1,1,0)” ,$2,$1,83,%4,37,89);
break;
case 2:case 3:case 4: // PM_MEM2(cond,L,H,S,d,n,adr,I,P,U,W)
sprintf ($$ ,”PM_MEM2(%s ,%d,%d,%d,%d,%d,%s ,1,1,1,0)” ,$2,81,!($3%2),($3>2),%$4,87,8%9);
break;

}

| MEM cond memsiz REG C OBRA REG C imm CBRA {
$8 = malloc(100);
switch ($3) {
case O:case 1: // PM_MEM(cond,L,B,d,n,adr, I,Pre, Upcount(sign), Writeback)
sprintf ($$,”PM_MEM(%s ,%d,%d,%d,%d,%s ,.0,1,1,0)” ,$2,8%1,83,84,87,89);
break;
case 2:case 3:case 4: // PM_MEM2(cond,L,H,S,d,n,adr,I,P,U,W)
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ROM | blocksize | snd | livel | patch | pasc | type time | realtime | comp. to C
MAR 11.62 145% 100%
ZEL 21.12 80% 100%
TUR 17.51 96% 100%
TET 27.09 62% 100%
LUC 27.63 61% 100%
BAL 29.06 58% 100%
LOO 13.76 123% 100%
RAC 24.22 70% 100%
BOX 11.78 143% 100%
MA3 27.10 62% 100%

Table 3: Original C Interpreter

163 sprintf ($$ ,”PM_MEM2(%s ,%d,%d,%d,%d,%d,%s-0,1,1,0)” ,$2,81,!($3%2),($3>2),%$4,87,8%9);
164 break;

165 }

166 }

167

168 | memsiz: { $8$ =05 }

169 | B {88 =1; }

170 | H {88 =2; }

171 | B S {88 =23; }

172 | H S {88 =4; }

173

174 | barrel: REG { $$ = malloc(100); sprintf($$, "%d”, $1); }

175 | REG C SHIFT imm {

176 $8 = malloc(100);

177 sprintf ($$, "REG_%s(%d,%s)”, str_toupper($3),$1,$%4); }

178 | REG C SHIFT REG {

179 $8 = malloc(100);

180 sprintf ($$, "REG_%s _-REG(%d,%d)” , str_toupper($3),%$1,$4); }
181

182

183 | branch: brop cond IMM {

184 $$ = malloc(100); sprintf($$, "PM_BRA(%s,%d,%s)”, $2, $1, $3); }
185

186 | imm: IMM { $8 = check_imm($1); }

187

188

189 | brop: B { 88 =035 }

190 | BL { $$ = 1; }

191 | %%
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ROM | blocksize | snd | livel | patch | pasc | type time | realtime | comp. to C
MAR 100 no yes yes yes d 5.52 306% 211%
ZEL 100 no | yes yes yes d 6.18 273% 342%
TUR 100 no yes yes yes i

TET 100 no yes yes yes i 6.43 263% 421%
LUC 100 no yes yes yes d 7.62 222% 363%
BAL 100 no yes yes yes i

LOO 100 no | yes yes yes d 5.90 286% 233%
RAC 100 no yes yes yes d 7.17 235% 338%
BOX 100 no yes yes yes d 5.76 293% 205%
MA3 100 no yes yes yes d 6.22 271% 436%
MAR 64 no yes yes yes d 5.54 305% 210%
ZEL 64 no yes yes yes d 6.39 264% 331%
TUR 64 no yes yes yes i| 14.29 118% 123%
TET 64 no yes yes yes i 6.83 247% 397%
LUC 64 no yes yes yes d 8.08 209% 342%
BAL 64 no yes yes yes i

LOO 64 | no | yes yes yes d 6.01 281% 229%
RAC 64 no yes yes yes d 8.40 201% 288%
BOX 64 | no | yes yes yes d 5.54 305% 213%
MA3 64 no yes yes yes d 6.60 256% 411%
MAR 32 no yes yes yes d 5.71 296% 204%
ZEL 32 no yes yes yes d 6.89 245% 307%
TUR 32 no yes yes yes i| 15.28 110% 115%
TET 32 no yes yes yes i 7.62 222% 356%
LUC 32 no | yes yes yes d 8.90 190% 310%
BAL 32 no yes yes yes i 8.20 206% 354%
LOO 32 no | yes yes yes d 6.27 269% 219%
RAC 32 no yes yes yes d 8.77 192% 276%
BOX 32 no yes yes yes d 5.79 292% 203%
MA3 32 no yes yes yes d 7.39 228% 367%
MAR 16 no yes yes yes d 6.05 279% 192%
ZEL 16 no | yes yes yes d 7.55 224% 280%
TUR 16 no yes yes yes i| 15.59 108% 112%
TET 16 no | yes yes yes i 8.46 200% 320%
LUC 16 no | yes yes yes d | 10.05 168% 275%
BAL 16 no yes yes yes i 9.37 180% 310%
LOO 16 no | yes yes yes d 6.72 251% 205%
RAC 16 no yes yes yes d 9.59 176% 253%
BOX 16 no | yes yes yes d 6.14 275% 192%
MA3 16 no yes yes yes d 8.30 203% 327%
MAR 8 no yes yes yes d 8.62 196% 135%
ZEL 8 | no | yes yes yes d 8.68 194% 243%
TUR 8 no yes yes yes i| 18.25 92% 96%
TET 8 | mno | yes yes yes i 9.64 175% 281%
LUC 8 | no | yes yes yes d | 12.28 137% 225%
BAL 8 no yes yes yes i| 11.13 152% 261%
LOO 8 | no | yes yes yes d 7.52 224% 183%
RAC 8 no yes yes yes d | 11.48 147% 211%
BOX 8 | no | yes yes yes d 6.92 244% 170%
MA3 8 no yes yes yes d 9.60 176% 282%
MAR 4 no yes yes yes d 8.00 211% 145%
ZEL 4| no | yes yes yes d | 11.46 147% 184%
TUR 4 no yes yes yes i| 26.09 65% 67%
TET 4| no | yes yes yes i| 13.09 129% 207%
LUC 4| no | yes yes yes d | 13.79 122% 200%
BAL 4 no yes yes yes i| 15.40 110% 189%
LOO 4| no | yes yes yes d 9.33 181% 147%
RAC 4 no yes yes yes d | 14.94 113% 162%
BOX 4| no | yes yes yes d 8.16 207% 144%
MA3 4 no yes yes yes d | 13.49 125% 201%

Table 4: DT with different block sizes
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ROM | blocksize | snd | livel | patch | pasc | type time | realtime | comp. to C
MAR 32 no no yes yes d 5.74 294% 202%
ZEL 32 no no yes yes d 6.91 244% 306%
TUR 32 no no yes yes i| 15.03 112% 117%
TET 32 no no yes yes i 7.63 221% 355%
LUC 32 no no yes yes d 9.14 185% 302%
BAL 32 no no yes yes i 8.22 205% 354%
LOO 32 no no yes yes d 6.37 265% 216%
RAC 32 no no yes yes d 9.15 184% 265%
BOX 32 no no yes yes d 5.85 289% 201%
MA3 32 no no yes yes d 7.40 228% 366%
MAR 32 no no yes no d 6.72 251% 173%
ZEL 32 no no yes no d 9.90 171% 213%
TUR 32 no no yes no i| 15.99 106% 110%
TET 32 no no yes no i| 12.33 137% 220%
LUC 32 no no yes no d | 12.61 134% 219%
BAL 32 no no yes no i| 12.21 138% 238%
LOO 32 no no yes no d 7.26 233% 190%
RAC 32 no no yes no d | 11.70 144% 207%
BOX 32 no no yes no d 6.80 248% 173%
MA3 32 no no yes no d | 11.84 143% 229%
MAR 32 no no no no d 7.02 240% 166%
ZEL 32 no no no no d | 10.17 166% 208%
TUR 32 no no no no i| 16.20 104% 108%
TET 32 no no no no i| 12.56 134% 216%
LUC 32 no no no no d | 12.63 134% 219%
BAL 32 no no no no i| 12.75 132% 228%
LOO 32 no no no no d 7.59 222% 181%
RAC 32 no no no no d | 12.10 140% 200%
BOX 32 no no no no d 7.03 240% 168%
MA3 32 no no no no d | 12.04 140% 225%
MAR 4 no yes yes yes d 8.00 211% 145%
ZEL 4| no | yes yes yes d | 11.46 147% 184%
TUR 4 no yes yes yes i| 26.09 65% 67%
TET 4| no | yes yes yes i| 13.09 129% 207%
LUC 4 no yes yes yes d | 13.79 122% 200%
BAL 4| no | yes yes yes i| 15.40 110% 189%
LOO 4| no | yes yes yes d 9.33 181% 147%
RAC 4 no yes yes yes d | 14.94 113% 162%
BOX 4| no | yes yes yes d 8.16 207% 144%
MA3 4 no yes yes yes d | 13.49 125% 201%
MAR 4 no no no no d | 10.31 164% 113%
ZEL 4 no no no no d | 17.36 97% 122%
TUR 4 no no no no i| 28.44 59% 62%
TET 4 no no no no i| 21.50 79% 126%
LUC 4 no no no no d | 21.52 78% 128%
BAL 4 no no no no i| 22.89 74% 127%
LOO 4 no no no no d | 12.13 139% 113%
RAC 4 no no no no d | 19.65 86% 123%
BOX 4 no no no no d | 10.24 165% 115%
MA3 4 no no no no d | 21.59 78% 126%
Table 5: DT with different optimisations
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ROMO ROM1 RAM | HIRAM IDLE SUM
MAR 3406778 1334928 0 170280 | 12684848 17596834
ZEL 10035326 2580226 0 171140 4821504 17608196
TUR 4682245 1847772 | 2143943 180704 8718893 17573557
TET 16639427 761957 0 172172 0 17573556
LUC 16439327 962059 0 172172 0 17573558
BAL 16055944 1478566 0 39044 0 17573554
LOO 3302715 2029722 20713 170280 | 12061356 17584786
RAC 9872447 2467281 0 155380 5080443 17575551
BOX 11040574 2303129 0 166668 4096409 17606780
MA3 16517624 883760 0 172172 0 17573556
SUM | 107992407 | 16649400 | 2164656 | 1570012 | 47463453 | 175839928

Table 6: CPU Doublecycles spent in different areas
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